A High Speed Multi-label Classifier based on Extreme Learning Machines

نویسندگان

  • Meng Joo Er
  • Rajasekar Venkatesan
  • Ning Wang
چکیده

In this paper a high speed neural network classifier based on extreme learning machines for multi-label classification problem is proposed and discussed. Multi-label classification is a superset of traditional binary and multiclass classification problems. The proposed work extends the extreme learning machine technique to adapt to the multi-label problems. As opposed to the singlelabel problem, both the number of labels the sample belongs to, and each of those target labels are to be identified for multi-label classification resulting in increased complexity. The proposed high speed multi-label classifier is applied to six benchmark datasets comprising of different application areas such as multimedia, text and biology. The training time and testing time of the classifier are compared with those of the state-of-the-arts methods. Experimental studies show that for all the six datasets, our proposed technique have faster execution speed and better performance, thereby outperforming all the existing multi-label classification methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel online multi-label classifier for high-speed streaming data applications

In this paper, a high-speed online neural network classifier based on extreme learning machines for multi-label classification is proposed. In multi-label classification, each of the input data sample belongs to one or more than one of the target labels. The traditional binary and multi-class classification where each sample belongs to only one target class forms the subset of multi-label class...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

Improving Multi-Instance Multi-Label Learning by Extreme Learning Machine

Multi-instance multi-label learning is a learning framework, where every object is represented by a bag of instances and associated with multiple labels simultaneously. The existing degeneration strategy-based methods often suffer from some common drawbacks: (1) the user-specific parameter for the number of clusters may incur the effective problem; (2) SVM may bring a high computational cost wh...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1608.08898  شماره 

صفحات  -

تاریخ انتشار 2015